Trigonometry Review

Graphs

© General equation: $y=a \sin (b x-c)+d$

- A: Amplitude - Height from the resting line
- B: Frequency - Amount of times the function repeats within the period of the parent function

O Sine, Cosine, Cosecant, Secant: Period is 2π
O Tangent and Cotangent: Period is π

- C: With B gives you horizontal (phase) shift

O $\frac{c}{b}=$ phase shift

- D: Vertical shift

Sine Graph: Starts at 0
© 5 Critical Values: Rest, Max, Rest, Min, Rest (positive sine)
(-) Period is 2π
© Amplitude is 1

Cosine Graph: Starts at 1
© 5 Critical Values: Max, Rest, Min, Rest, Max (positive cosine)
(O) Period is 2π
© Amplitude is 1

Tangent Graph: Starts at 0
© Vertical Asymptotes at $-\frac{\pi}{2}$ and $\frac{\pi}{2}$
© Period is π

Reference Angles

© Acute angle
© Positive Angle
© Initial ray is on the x -axis

Quadrants

Quadrant 1:
© All functions are positive
Quadrant 2:
○ Sine and Cosecant are positive Quadrant 3:
© Tangent and Cotangent are positive
 Quadrant 4:
© Cosine and Secant are positive

Trig Chart

Degrees	Radians	Sin	Cos	Tan	Csc	Sec	Cot
0°							
30°							
45°							
60°							
90°							

Calculating Exact Values of Trig Functions
○ Reference Angle

- Gives you value of the function
© Quadrant
- Gives you the sign (+ or -)

Conversions

© Degrees to Radians

- $\theta * \frac{\pi}{180}$

○ Radians to Degrees

- $\theta * \frac{180}{\pi}$

Coterminal Angles

○ Positive:

- Add 360 or 2π until the angle is positive

○ Negative:

- Subtract 360 or 2π until the angle is negative

Complementary and Supplementary

○ Complementary

- Two angles that add up to 90° or $\frac{\pi}{2}$

○ Supplementary

- Two angles that add up to 180° or π

Right Triangle Trigonometry

$\sin \theta=\frac{o}{h}$
$\cos \theta=\frac{a}{h}$
$\tan \theta=\frac{o}{a}$
$\csc \theta=\frac{h}{o}$
$\sec \theta=\frac{h}{a}$
$\cot \theta=\frac{a}{o}$

