- Using your graphing calculator, graph the following and note the characteristics of each graph (End Behavior, Maximum(s)/ Minimum(s), Number of x - and y-intercepts)

1. $f(x)=6$
2. $g(x)=5 x+6$
3. $h(x)=4 x^{2}+5 x+6$
4. $q(x)=3 x^{3}+4 x^{2}+5 x+6$
5. $r(x)=2 x^{4}+3 x^{3}+4 x^{2}+5 x+6$
6. $s(x)=x^{5}+2 x^{4}+3 x^{3}+4 x^{2}+5 x+6$

GRAPHS

GRAPHS

ESSENTIAL QUESTIONS

- How can you use the degree and leading coefficient of a polynomial to make predictions about the graph of a polynomial?
- What are the zeros of a polynomial function and how can they be determined?
- How can we use the factored form to solve a polynomial equation?
- What is the role of zeros and end behaviors when sketching a graph of a polynomial function?
- What is the role of the graphing calculator when solving polynomial equations?
- What are relative extreme values of a polynomial function?

LEARNING GOAL

- SWBAT:
- analyze, model, solve, and graph polynomial functions including problems that involve real world scenarios.

CLASS AGENDA

- Do Now
- Definitions
- Small Group Practice
- Writing in expanded form
- Identifying the Degree of the function
- Identifying the Leading Coefficient
- Break
- Synthetic substitution
- Small Group Practice

๑ Closure

DEFINITIONS

- Polynomial
- an expression that can be written in the form:
- $a_{n} x^{n}+a_{n-1} x^{n-1} \ldots a_{2} x^{2}+a_{1} x+a_{0}$
- n is a NONNEGATIVE integer
- Terms
- $a_{n} x^{n}, a_{n-1} x^{n-1}, a_{2} x^{2}, a_{1} x$, and a_{0}
- Coefficients
- $a_{n}, a_{n-1}, a_{2}, a_{1}$, and a_{0}
- Leading Term
- The term containing the highest power of x
- Leading Coefficient
- The coefficient of the leading term

DEGREE

Degree

Name

Example

0	Constant	5
1	Linear	$3 x+2$
2	Quadratic	$x^{2}-4$
3	Cubic	$x^{3}+2 x+1$
4	Quartic	$-3 x^{4}+x$
5	Quintic	$x^{5}+\pi x^{4}-3.1 x^{3}+11$

POLYNOMIAL OR NOT?

$$
\odot f(x)=2 x^{3}-32 x \quad \text { and } \quad g(x)=\frac{x+1}{x-1}
$$

EXPANDED FORM

- Write the function including ALL degrees
$\odot f(x)=x^{3}-x+4$

○ $g(x)=5 x^{5}+3 x^{3}-2$
$\bigcirc(x)=2 x^{2}-4 x^{4}-3$

SMAGLGDOUD DRACTVE

© Is it a function?

$$
\text { 1. } f(x)=\frac{x^{3}+2 x^{2}-1}{x-1}
$$

- Write in expanded form

$$
\text { 2. } g(x)=x^{2}-3 x^{3}+1
$$

- Identify the Degree of the function
- Identify the Leading

$$
\text { 4. } s(x)=4 x^{3}-5 x^{5}+2
$$ Coefficient

$$
\text { 3. } h(x)=x^{4}-2 x^{2}
$$

$$
\text { 5. } \quad t(x)=1-2 x^{3}+3 x^{2}-3 x^{5}
$$

BREAK

ROOTS / ZEROS

- Root or Zero
- Any value for x which $\mathrm{P}(\mathrm{x})=0$
- How would you determine the roots/zeros?
- $f(x)=x^{2}-4$
- $g(x)=2 x^{3}-32 x$

VALUES OF THE FUNCTION
 $\odot f(x)=3 x^{4}-7 x^{3}-5 x^{2}+9 x+10$, find:

1. $f(2)$
2. $f(-3 n)$

SYNTHETIC SUBSTITUTION

- Can be used to find ANY value of the function
$\odot f(x)=3 x^{4}-7 x^{3}-5 x^{2}+9 x+10$, find:

1. $f(2)=3 \quad-7 \quad-5 \quad 9 \quad 10$
2. $f(-3 n)=3 \quad-7 \quad-5 \quad 9 \quad 10$

SMALL GROUP PRACTICE

- Determine the given value of each function

$$
\begin{array}{ll}
\text { 1. } & h(x)=2 x^{2}-5 x+6 \\
\text { 1. } & h(-1) \\
\text { 2. } & h(2 i) \\
\text { 3. } & h(1+i) \\
\text { 4. } & h(3 a) \\
\text { 2. } & P(x)=8 x-4 x^{2} \\
\text { 1. } & P(2 \sqrt{3}) \\
\text { 2. } & P(1-\sqrt{2}) \\
\text { 3. } & P(1+2 i) \\
\text { 4. } & P\left(\frac{2}{x}\right)
\end{array}
$$

CLOSURE

CLOSURE

- How do you determine the Degree of a function?
- How can you use synthetic substitution to find the value of a function?

