DO NOW

- Using your graphing calculator, graph the following and note the characteristics of each graph (End Behavior, Maximum(s)/Minimum(s), Number of x- and y-intercepts)
- 1. f(x) = 6
- g(x) = 5x + 6
- 3. $h(x) = 4x^2 + 5x + 6$
- 4. $q(x) = 3x^3 + 4x^2 + 5x + 6$
- 5. $r(x) = 2x^4 + 3x^3 + 4x^2 + 5x + 6$
- 6. $s(x) = x^5 + 2x^4 + 3x^3 + 4x^2 + 5x + 6$

GRAPHS

GRAPHS

ESSENTIAL QUESTIONS

- How can you use the degree and leading coefficient of a polynomial to make predictions about the graph of a polynomial?
- What are the zeros of a polynomial function and how can they be determined?
- How can we use the factored form to solve a polynomial equation?
- What is the role of zeros and end behaviors when sketching a graph of a polynomial function?
- What is the role of the graphing calculator when solving polynomial equations?
- What are relative extreme values of a polynomial function?

LEARNING GOAL

SWBAT:

 analyze, model, solve, and graph polynomial functions including problems that involve real world scenarios.

CLASS AGENDA

- O Do Now
- Definitions
- Small Group Practice
 - Writing in expanded form
 - Identifying the Degree of the function
 - Identifying the Leading Coefficient
- Break
- Synthetic substitution
- Small Group Practice
- Closure

DEFINITIONS

Polynomial

- an expression that can be written in the form:
- $a_n x^n + a_{n-1} x^{n-1} \dots a_2 x^2 + a_1 x + a_0$
- n is a NONNEGATIVE integer

• Terms

- $a_n x^n$, $a_{n-1} x^{n-1}$, $a_2 x^2$, $a_1 x$, and a_0
- Coefficients
 - \bullet a_n , a_{n-1} , a_2 , a_1 , and a_0
- Leading Term
 - The term containing the highest power of x
- Leading Coefficient
 - The coefficient of the leading term

DEGREE

Degree	Name	Example
0	Constant	5
1	Linear	3x + 2
2	Quadratic	$x^2 - 4$
3	Cubic	$x^3 + 2x + 1$
4	Quartic	$-3x^4 + x$
5	Quintic	$x^5 + \pi x^4 - 3.1x^3 + 11$

POLYNOMIAL OR NOT?

$$g(x) = \frac{x+1}{x-1}$$

EXPANDED FORM

• Write the function including ALL degrees

SMALL GROUP PRACTICE

• Is it a function?

- 1. $f(x) = \frac{x^3 + 2x^2 1}{x 1}$
- Write in expanded form
- $g(x) = x^2 3x^3 + 1$

- Identify the Degree of the function
- 3. $h(x) = x^4 2x^2$

 Identify the Leading Coefficient

- 4. $s(x) = 4x^3 5x^5 + 2$
- 5. $t(x) = 1 2x^3 + 3x^2 3x^5$

BREAK

ROOTS / ZEROS

- Root or Zero
 - Any value for x which P(x) = 0
- How would you determine the roots/zeros?

$$f(x) = x^2 - 4$$

$$g(x) = 2x^3 - 32x$$

VALUES OF THE FUNCTION

$$2. \quad f(-3n)$$

SYNTHETIC SUBSTITUTION

Can be used to find ANY value of the function

1.
$$f(2) = 3 - 7 - 5 - 9 = 10$$

2.
$$f(-3n)=3$$
 -7 -5 9 10

SMALL GROUP PRACTICE

Determine the given value of each function

1.
$$h(x) = 2x^2 - 5x + 6$$

- 1. h(-1)
- 2. h(2i)
- 3. h(1+i)
- 4. h(3a)

2.
$$P(x) = 8x - 4x^2$$

- 1. $P(2\sqrt{3})$
- 2. $P(1-\sqrt{2})$
- 3. P(1+2i)
- 4. $P\left(\frac{2}{x}\right)$

CLOSURE

CLOSURE

- How do you determine the Degree of a function?
- How can you use synthetic substitution to find the value of a function?