Dynamics of Trigonometry Block 3B - Seating Chart

			Merrick	Nelson	Corcoran	Andreadis	Patel	
			Hunter	Alycia	Matt	Jason	Kishan	
Bass	Angley		Heindel	Nasser	Pengue	Goncalves	Bailey	Karabas
Monica	David		Vanessa	Alanah	Nicholas	Tiffany	Joseph	Matthew
Babar	Haugland		Tsal	Caffrey	Ochoa	Bezerra	Garibaldi	Grasso
Joseph	Brina		Will	Alexa	Omar	Emily	Andrew	Cierra
Teacher's Desk		Pickett	Salzer	Douglas	Degraw	Fisher	O'Hare	
		Julia	Tyler	Acacia	Devin	Deanna	Emily	

ESSENTIAL QUESTIONS

- What are the key characteristics of quadratic functions and their graphs?
- How are they key characteristics of quadratic functions similar and different to the key characteristics of linear functions?
- How do changes in the parameters of a quadratic function effect the shape and position of its graph?
- How can the graph of a function be used to determine the domain and range of the function?
- How do you identify a situation where a quadratic model would be most appropriate?
- What makes a complex number complex?
- How do you represent the square root of a negative number?
- How do you perform operations with complex numbers?

LEARNING GOAL

- SWBAT:
 - Describe the changes to the graph of a quadratic equation based on the parameters of the function.
 - Determine the vertex of a quadratic equation in any form.

CLASS AGENDA

- Simplifying radicals with imaginary numbers
- Partner Practice
- Break
- Converting between forms
- Partner Practice

IMAGINARY NUMBERS

• Any negative value under the radica

• $i = \sqrt{-1}$

Example:

- Simplify $\sqrt{-72}$
 - √−1√36√2

6i√2

SIMPLIFY

- 1. $\sqrt{-48}$
- 2. $\sqrt{-50}$
- *3.* 3√−63
- $4. \quad 2\sqrt{-98}$
- 5. (3+2i) 3i + 2
- 6. 2i 3 (2 + 3i)

PARTNER PRACTICE

 With the person you are sitting next to, complete the worksheet

CONVERTING BETWEEN FORMS

Standard Form:

- $f(x) = ax^2 + bx + c$
- Vertex:

$$\circ \left(-\frac{b}{2a}, f\left(-\frac{b}{2a}\right)\right)$$

• Vertex Form:

•
$$f(x) = a(x - h)^2 + k$$

- Vertex:
 - \circ (-h,k)

Intercept Form:

- f(x) = (x+a)(x+b)
- X-intercepts:
 - (−*a*, 0) and (−*b*, 0)

From Standard to Vertex Form:

- Step 1: Calculate the AOS
- Step 2: Calculate the vertex
- Step 3: Write in Vertex Form (use the value of "a" in both)

$$f(x) = 2x^2 - 4x + 5$$

From Standard to Intercept Form:

• Step 1: Factor

 if you can't, use the quadratic formula to find the zeroes

$$f(x) = 2x^2 - 4x + 2$$

From Vertex to Standard Form:

- Step 1: Expand
- Step 2: Simplify

$$f(x) = 2(x-3)^2 + 5$$

From Intercept to Standard Form:

- Step 1: Expand
- Step 2: Simplify

$$f(x) = 3(x-3)(x+2)$$

PARTNER PRACTICE

 With the person you are sitting next to, complete the worksheet

CLOSURE