Dynamics of Trigonometry Block 3B - Seating Chart

		Merrick	Nelson	Corcoran	Andreadis	Patel	
		Hunter	Alycia	Matt	Jason	Kishan	
Bass	Angley	Heindel	Nasser	Pengue	Goncalves	Bailey	Karabas
Monica	David	Vanessa	Alanah	Nicholas	Tiffany	Joseph	Matthew
Babar	Haugland	Tsal	Caffrey	Ochoa	Bezerra	Garibaldi	Grasso
Joseph	Brina	Will	Alexa	Omar	Emily	Andrew	Cierra
Teacher's Desk		Pickett	Salzer	Douglas	Degraw	Fisher	O'Hare
		Julia	Tyler	Acacia	Devin	Deanna	Emily

ESSENTIAL QUESTIONS

- What are the key characteristics of quadratic functions and their graphs?
- How are they key characteristics of quadratic functions similar and different to the key characteristics of linear functions?
- How do changes in the parameters of a quadratic function effect the shape and position of its graph?
- How can the graph of a function be used to determine the domain and range of the function?
- How do you identify a situation where a quadratic model would be most appropriate?
- What makes a complex number complex?
- How do you represent the square root of a negative number?
- How do you perform operations with complex numbers?

LEARNING GOAL

- SWBAT:
- Describe the changes to the graph of a quadratic equation based on the parameters of the function.
- Determine the vertex of a quadratic equation in any form.

CLASS AGENDA

- Simplifying radicals with imaginary numbers
- Partner Practice
- Break
- Converting between forms
- Partner Practice

MMAGINARY NUMBERS

- Any negative value under the radica - $i=\sqrt{-1}$

Example:

- Simplify $\sqrt{-72}$
- $\sqrt{-1} \sqrt{36} \sqrt{2}$
$-6 i \sqrt{2}$

SIMPLIFY

1. $\sqrt{-48}$
2. $\sqrt{-50}$
3. $3 \sqrt{-63}$
4. $2 \sqrt{-98}$
5. $(3+2 i)-3 i+2$
6. $2 i-3-(2+3 i)$

PARTNER PRACTICE

- With the person you are sitting next to, complete the worksheet

CONVERTING BETWEEN FORMS

- Standard Form:
- $f(x)=a x^{2}+b x+c$
- Vertex:
- $\left(-\frac{b}{2 a}, f\left(-\frac{b}{2 a}\right)\right)$
- Vertex Form:
- $f(x)=a(x-h)^{2}+k$
- Vertex:
- $(-h, k)$
- Intercept Form:
- $f(x)=(x+a)(x+b)$
- X-intercepts:
- $(-a, 0)$ and $(-b, 0)$

HOW TO CONVERT

From Standard to Vertex Form:

- Step 1: Calculate the AOS
- Step 2: Calculate the vertex
- Step 3: Write in Vertex Form (use the value of "a" in both)

Example:

$$
f(x)=2 x^{2}-4 x+5
$$

HOW TO CONVERT

From Standard to Intercept Form:

- Step 1: Factor
- if you can't, use the quadratic formula to find the zeroes

Example:

$$
f(x)=2 x^{2}-4 x+2
$$

HOW TO CONVERT

From Vertex to Standard Form:

- Step 1: Expand
- Step 2: Simplify

Example:

$$
f(x)=2(x-3)^{2}+5
$$

HOW TO CONVERT

From Intercept to Standard Form:

- Step 1: Expand
- Step 2: Simplify

Example:

$$
f(x)=3(x-3)(x+2)
$$

PARTNER PRACTICE

- With the person you are sitting next to, complete the worksheet
CLOSURE

