DO NOW

- Using a graphing calculator, graph the 3 basic trigonometric functions
- Then: sketch each graph, identify any maximum values, minimum values, any values that are not included in the graph and how often the graph repeats.

1.
$$y = \sin(x)$$

$$2. \quad y = \cos(x)$$

3.
$$y = \tan(x)$$

LEARNING GOALS

SWBAT:

 Analyze the amplitude, period, and any asymptotes of a trigonometric function given an equation of the function.

CLASS AGENDA

- Calculator Activity
- Identify the Period
- Identify the Amplitude
- Break
- Identify the Asymptotes
- Evaluate functions
- Closure

$$Y = SIN(X)$$

Maximum Value:

Minimum Value:

Any values not included in the graph?

How often does it repeat?

$$Y = COS(X)$$

Maximum Value:

Minimum Value:

Any values not included in the graph?

How often does it repeat?

Maximum Value:

Minimum Value:

Any values not included in the graph?

How often does it repeat?

AMPLITUDE

Amplitude

- The amplitude is the distance from the "resting" position (otherwise known as the mean value or average value) of the curve.
- Amplitude is always a positive quantity. We could write this using absolute value signs.
 For the curve y = a sin x,
 amplitude = |a|

IDENTIFY THE AMPLITUDE

1.
$$y = 2\sin(x)$$

$$2. \quad y = \frac{1}{2}\cos(x)$$

$$3. \quad y = -3\cos(x)$$

$$4. \quad y = \frac{2}{5}\sin(x)$$

$$5. \quad y = -\frac{3}{4}\cos(x)$$

PERIOD

• The period is the time it takes to go through one cycle and then start over again.

SINE AND COSINE

- To calculate: $\frac{2\pi}{B}$
- $\bullet Y = Asin(Bx)$
- $\bullet Y = Acos(Bx)$

IDENTIFY THE PERIOD

1.
$$y = \sin(2x)$$

$$2. \quad y = \cos(4x)$$

3.
$$y = \cos\left(\frac{1}{2}x\right)$$

4.
$$y = \sin(\pi x)$$

5.
$$y = \sin(\frac{\pi}{2}x)$$

TANGENT

• To calculate: $\frac{\pi}{B}$

 $\bullet Y = Atan(Bx)$

IDENTIFY THE PERIOD

1.
$$y = \tan(2x)$$

$$2. \quad y = \tan(4x)$$

3.
$$y = \tan\left(\frac{1}{2}x\right)$$

4.
$$y = \tan(\pi x)$$

5.
$$y = \tan(\frac{\pi}{2}x)$$

BREAK

EVALUATE THE FUNCTION

- Identify the Amplitude and the period of the following:
- $1. \quad y = -2\sin(3x)$
- $2. \quad y = 3\cos(5x)$
- $3. \quad y = -\frac{1}{4} \tan(2x)$
- 4. $y = 4\tan\left(\frac{\pi}{2}x\right)$
- $5. \quad y = -\frac{1}{2}\cos(\pi x)$
- $6. \quad y = \frac{3}{2}\sin(\frac{\pi}{4}x)$

ASYMPTOTES

- Occur when the value of the function is undefined
- Set limits on the function

WHAT DOES IT MEAN TO BE UNDEFINED?

degrees	radians	sinθ	cos θ	tan 0	csc 0	sec θ	cot 0
0°	0	0	1	0	_	1	_
30°	<u>π</u> 6	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	<u> </u>	2	$\frac{2\sqrt{3}}{3}$	√3
45°	<u>π</u> 4	$\frac{-2}{2}$	$\frac{\sqrt{2}}{2}$	1	$\sqrt{2}$	$\sqrt{2}$	1
60°	<u>π</u> 3	3 2	$\frac{1}{2}$	√3	2-√3 3	2	<u>√3</u> 3
90°	$\frac{\pi}{2}$	1	0	-	1	-	0

WHERE ARE THE ASYMPTOTES?

WHERE ARE THE ASYMPTOTES?

WHERE ARE THE ASYMPTOTES?

EVALUATE THE FUNCTIONS

 With a graphing calculator, graph the functions and identify two asymptotes.

1.
$$y = \tan\left(x + \frac{\pi}{4}\right)$$

$$2. \quad y = \tan\left(x - \frac{\pi}{2}\right)$$

3.
$$y = \tan(x + \pi)$$

What did you learn today?

CLOSURE

- What was one thing you learned today?
- What was one thing you would like to spend more time on?