- Using a graphing calculator, graph the 3 basic trigonometric functions
\odot Then: sketch each graph, identify any maximum values, minimum values, any values that are not included in the graph and how often the graph repeats.

1. $y=\sin (x)$
2. $y=\cos (x)$
3. $y=\tan (x)$

LEARNING GOALS

- SWBAT:
- Analyze the amplitude, period, and any asymptotes of a trigonometric function given an equation of the function.

CLASS AGENDA

- Calculator Activity
- Identify the Period
- Identify the Amplitude
- Break
- Identify the Asymptotes
- Evaluate functions
- Closure

$Y=\operatorname{SIN}(X)$

Maximum Value:
Minimum Value:
Any values not included in the graph?
How often does it repeat?
$Y \equiv \cos (X)$

Maximum Value:
Minimum Value:
Any values not included in the graph?
How often does it repeat?

Maximum Value:
Minimum Value:
Any values not included in the graph? How often does it repeat?

AMPLITUDE

Amplitude

- The amplitude is the distance from the "resting" position (otherwise known as the mean value or average value) of the curve.
- Amplitude is always a positive quantity. We could write this using absolute value signs. For the curve $y=a \sin x$, amplitude $=|a|$

IDENTIFY THE AMPLITUDE

1. $y=2 \sin (x)$
2. $y=\frac{1}{2} \cos (x)$
3. $y=-3 \cos (x)$
4. $y=\frac{2}{5} \sin (x)$
5. $y=-\frac{3}{4} \cos (x)$

PERIOD

- The period is the time it takes to go through one cycle and then start over again.

SINE AND COSINE

- To calculate: $\frac{2 \pi}{B}$

๑ Y =Asin(Bx)
๑Y $\mathrm{Y}=\mathrm{Acos}(\mathrm{Bx})$

IDENTIFY THE PERIOD

1. $y=\sin (2 x)$
2. $y=\cos (4 x)$
3. $y=\cos \left(\frac{1}{2} x\right)$
4. $y=\sin (\pi x)$
5. $y=\sin \left(\frac{\pi}{2} x\right)$

TANGENT

- To calculate: $\frac{\pi}{B}$

๑ Y = Atan(Bx)

IDENTIFY THE PERIOD

1. $y=\tan (2 x)$
2. $y=\tan (4 x)$
3. $y=\tan \left(\frac{1}{2} x\right)$
4. $y=\tan (\pi x)$
5. $y=\tan \left(\frac{\pi}{2} x\right)$

EVALUATE THE FUNCTION

- Identify the Amplitude and the period of the following:

1. $y=-2 \sin (3 x)$
2. $y=3 \cos (5 x)$
3. $y=-\frac{1}{4} \tan (2 x)$
4. $y=4 \tan \left(\frac{\pi}{2} x\right)$
5. $y=-\frac{1}{2} \cos (\pi x)$
6. $y=\frac{3}{2} \sin \left(\frac{\pi}{4} x\right)$

- Occur when the value of the function is undefined
- Set limits on the function

WHAT DOES IT MEAN TO BE

UNDEFINED?

degrees	radianc	$\sin \theta$	$\cos \theta$	$\tan \theta$	$\csc \theta$	$\sec \theta$	$\cot \theta$
0°	0	0	1	0	-	1	-
30°	$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	2	$\frac{2 \sqrt{3}}{3}$	$\sqrt{3}$
45°	$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	$\sqrt{2}$	$\sqrt{2}$	1
60°	$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	$\frac{2 \sqrt{3}}{3}$	2	$\frac{\sqrt{3}}{3}$
90°	$\frac{\pi}{2}$	1	0	-	1	-	0

WHERE ARE THE ASYMPTOTES?

WHERE ARE THE ASYMPTOTES?

WHERE ARE THE ASYMPTOTES?

EVALUATE THE FUNCTIONS

- With a graphing calculator, graph the functions and identify two asymptotes.

1. $y=\tan \left(x+\frac{\pi}{4}\right)$
2. $y=\tan \left(x-\frac{\pi}{2}\right)$
3. $y=\tan (x+\pi)$

What did you learn today?

CLOSURE

- What was one thing you learned today?
- What was one thing you would like to spend more time on?

