LEARNING GOALS

- SWBAT describe an angle and convert between degree and radian measures given an angle measured in either degrees or radians.
- SWBAT identify the unit circle and its relationships to real numbers.

CLASS AGENDA

- Clock activity
- Degrees vs. Radians
- Break
- Unit Circle
- Closure

CLOCK ACTIVITY

CLOCR ACTIVITY

- Draw a clock

1. Center is the Origin
2. Add the following times
3. 1 A - Halfway between 1 and 2
4. 4 A - Halfway between 4 and 5
5. 7A - Halfway between 7 and 8
6. 10 A - Halfway between 10 and 11

- If these times were angles created by the x-axis and the minute hand (moving counter clockwise), what would each angle be?

TERMMNAL AND INITIAL SIDE OF AN ANGLE

Figure 4.1

STANDARD POSITION OF AN ANGLE

 -Figure 4.2

POSITIVE AND NEGATIVE ANGLES

COTERMINALANGLE

BREAK

WHAT IS A RADIAN?

Definition of Radian

One radian (rad) is the measure of a central angle θ that intercepts an arc s equal in length to the radius r of the circle. See Figure 4.5. Algebraically this means that

$$
\theta=\frac{s}{r}
$$

where θ is measured in radians.

WHAT IS A RADIAN?

Arc length $=$ radius when $\boldsymbol{\theta}=1$ radian.
Figure 4.5

WHAT IS A RADIAN?

Figure 4.6

WHAT IS A RADIAN?

Figure 4.7
What are these angles in degrees?

COMMON ANGLES ON THE UNIT

 CIRCLE

Figure 4.13

HOW DO WE CONVERT?
๑ Degrees to Radians?
-(degrees) * (п/180)

- Radians to Degrees?
-(radians) * (180/п)

PRACTICE

-Pages 260
o\# 1 \& 2 ALL

BREAK

THE UNIT CIRCLE

THE UNIT CIRCLE

$$
\left(-\frac{\sqrt{3}}{2}, \frac{1}{2}\right)
$$

Figure 4.21

THE UNIT CIRCLE

$$
\begin{gathered}
t=\frac{\pi}{2}, \frac{\pi}{2}+2 \pi, \frac{\pi}{2}+4 \pi, \ldots \\
t=\frac{3 \pi}{4}, \frac{3 \pi}{4}+2 \pi, \ldots{ }_{c}, \ldots, \frac{\pi}{4}, \frac{\pi}{4}+2 \pi, \ldots \\
t=\frac{5 \pi}{4}, \frac{5 \pi}{4}+2 \pi, \ldots, t=\frac{7 \pi}{4}, \frac{7 \pi}{4}+2 \pi, \ldots \\
t=\frac{3 \pi}{2}, \frac{3 \pi}{2}+2 \pi, \frac{3 \pi}{2}+4 \pi, \ldots
\end{gathered}
$$

Figure 4.23

TRIGONOMETRIC FUNCTIONS

- Sine (Sin)
$\operatorname{Sin}(t)=y$
- Cosine (Cos)

$$
\operatorname{Cos}(t)=x
$$

- Tangent (Tan)

$$
\operatorname{Tan}(t)=\frac{y}{x}
$$

- Cosecant (Csc)

$$
\operatorname{Csc}(t)=\frac{1}{y}
$$

- Secant (Sec)

$$
\operatorname{Sec}(t)=\frac{1}{x}
$$

\bigcirc Cotangent (Cot)
$\operatorname{Cot}(t)=\frac{x}{y}$

TRIG FUNCTIONS AND THE UNIT

 CIRCLE$$
\left(-\frac{\sqrt{3}}{2}, \frac{1}{2}\right)
$$

Figure 4.21

ODD AND EVEN TRIGONOMETRIC FUNCTIONS

○EVEN
$\odot \cos (-t)=\cos (t) \quad \odot \sec (-t)=\sec (t)$

○ODD
$\odot \sin (-t)=\sin (t) \quad \odot \csc (-t)=\csc (t)$
$\odot \tan (-\mathrm{t})=\tan (\mathrm{t}) \quad \odot \cot (-\mathrm{t})=\cot (\mathrm{t})$

CLOSURE

CLOSURE

- How do you convert an angle from degrees to radians?
- from radians to degrees?
- How does knowing the properties of a unit circle, allow me to understand the relationship of real numbers and trigonometric functions?

EXIT TICKET

- Create a table with the header being angles $0,30,45,60$, and 90 degrees.
- Write a second header with the radian equivalents.
- Calculate the six trigonometric functions for each angle
- Sine
- Cosecant
- Cosine
- Secant
- Tangent
- Cotangent

