

www.MathWorksheetsGo.com

Properties of Logarithms Worksheet

I. Model Problems.

II. Practice Expanding Logarithms

III. Rewrite expression as 1 Term

IV. Extension Problems

V. Answer Key

Relevant urls:

Log Rules: www.mathwarehouse.com/logs/

Online Scientific/Graphing Calculator http://www.meta-calculator.com/online/

(yes, it can graph logarithms!)

I) Model Problems

For any positive numbers *X*, *Y* and *N* and any positive base *b*, the following formulas are true:

$$\log_b X^N = N \cdot \log_b X$$

Power Rule for Logarithms

$$\log_b\left(\frac{X}{Y}\right) = \log_b X - \log_b Y$$

Quotient Rule for Logarithms

 $\log_b(XY) = \log_b X + \log_b Y$

Product Rule for Logarithms

The following examples show how to expand logarithmic expressions using each of the rules above.

Example 1

Expand log₂49³

$$\log_2 49^3 = 3 \cdot \log_2 49$$

Use the Power Rule for Logarithms.

The answer is 3 • log₂49

Example 2

Expand $log_3(7a)$

$$\log_3(7a) = \log_3(7 \cdot a)$$

Since 7a is the product of 7 and a, you can write 7a as $7 \cdot a$.

 $= \log_3 7 + \log_3 a$

Use the Product Rule for Logarithms.

The answer is $log_37 + log_3a$

Example 3

Expand $\log_5\left(\frac{11}{3}\right)$

$$\log_5\left(\frac{11}{3}\right) = \log_5 11 - \log_5 3$$

Use the Quotient Rule for Logarithms.

The answer is $log_511 - log_53$

The following examples use more than one of the rules at a time.

Example 4

Expand $\log_2\left(\frac{a^2b}{c}\right)$.

$$\log_2\left(\frac{a^2b}{c}\right) = \log_2 a^2b - \log_2 c$$

=
$$\log_2 a^2 + \log_2 b - \log_2 c$$

= $2 \cdot \log_2 a + \log_2 b - \log_2 c$

$$= 2 \cdot \log_2 a + \log_2 b - \log_2 a$$

The answer is $2 \cdot \log_2 a + \log_2 b - \log_2 c$.

Use the Quotient Rule for Logarithms.

Use the Product Rule for Logarithms. Use the Power Rule for Logarithms

Example 5

Expand $\log_5 \sqrt{8a^7}$.

$$\log_5 \sqrt{8a^7} = \log_5 (8a^7)^{1/2}$$

$$= \frac{1}{2} \log_5(8a^7)$$

$$= \frac{1}{2}\log_5(8a^7)$$

$$= \frac{1}{2}(\log_5 8 + \log a^7)$$

$$= \frac{1}{2}(\log_5 8 + 7\log a)$$

$$= \frac{1}{2}(\log_5 8 + 7\log a)$$

Rewrite the radical with a fractional exponent.

Use the Power Rule for Logarithms.

Use the Product Rule for Logarithms.

Use the Power Rule for Logarithms.

The answer is $\frac{1}{2}(\log_5 8 + 7\log a)$

II) Exercises

Expand the following logarithms.

Use either the power rule, product rule or quotient rule.

1.
$$\log_2(9^5) =$$

2.
$$\log_2(21) =$$

3.
$$\log_5\left(\frac{19}{2}\right) =$$

5.
$$\log_3(xy) =$$

6.
$$\log_5\left(\frac{a}{3}\right) =$$

7.
$$\log_3(5y) =$$

8.
$$\log_3(a^{10}) =$$

Expand the following logarithms using one or more of the logarithm rules.

9.
$$\log_5\left(\frac{12a}{2}\right) =$$

10.
$$\log_2\left(\frac{a}{b}\right)^5 =$$

11.
$$\log_5 \sqrt{x^5 y} =$$

12.
$$\log_5 \left(\frac{xy}{z}\right)^8 =$$

13.
$$\log_2\left(\frac{1-x}{y}\right)^3 =$$

14.
$$\log_3 \sqrt[5]{9x^3} =$$

15.
$$\log_3 \sqrt[3]{2x^5} =$$

16.
$$\log_2\left(\frac{9x^{10}}{y^2}\right) =$$

17.
$$\log_2\left(\frac{4a}{5}\right) =$$

18.
$$\log_2 \sqrt[3]{x^2 a} =$$

Sometimes you need to write an expression as a single logarithm. Use the rules to work backwards.

Example 6

Write $2 \log_3 x + \log_3 y$ as a single logarithm

$$\log_3 x^2 + \log_3 y$$

Use the Power Rule for Logarithms to move the 2 in $2 \log_3 x$ to the exponent of x

$$= \log_3 x^2 y$$

Use the Product Rule for Logarithms.

The answer is $\log_3 x^2 y$

Example 7

Simplify $\frac{1}{2}\log_5 100 - \log_5 2$

$$\log_5 100^{1/2} - \log_5 2$$

$$= \log_5 10 - \log_5 2$$

$$= \log_5(10 \div 2) = \log_5 5$$

Use the Power Rule for Logarithms.

Simplify.

Use the Quotient Rule for Logarithms.

Simplify.

The answer is 1

III) Rewrite as Single Expression

Write as a single logarithm.

19.
$$2 \log_3 10 - \log_3 4 =$$

20.
$$\frac{2}{3}\log_2 x + \log_2 y =$$

21.
$$\frac{1}{2}\log_5 x + \log_5 y =$$

22.
$$3 \log_3 x + 4 \log_3 y =$$

23.
$$6 \log_3 x + 2 \log_3 11 =$$

24.
$$4 \log_5 x - \log_5 y + \log_5 z =$$

25.
$$\frac{1}{2}\log_3 144 - \log_3 4 =$$

26.
$$\log_3 a + \log_3 b - 2 \log_3 c =$$

IV) Extension Problems

27. Let
$$\log_b 2 = x$$
, $\log_b 3 = y$ and $\log_b 5 = z$.

- (a) What is the value of $log_b 50$ in terms of x, y and z?
- (b) What is the value of $\log_b 3000$ in terms of x, y and z?
- 28. Are log₂16 and log₄64 equal? Why or why not?

29. Correct the error

There is an error in the student work shown below.

Directions: Simplify $\log_2(6x)^5$.

$$\log_{2}(6x)^{5} = 5 \cdot \log_{2}(6 \cdot x)$$
= 5 \cdot \log_{2}6 + \log_{2}x
= 5 \log_{2}6 + \log_{2}x

What is the error in the work above?

Answer Key

1.
$$5 \log_2 9 = 10 \log_2 3$$

$$2. \log_2 3 + \log_2 7$$

3.
$$\log_5 19 - \log_5 2$$

4.
$$\log_2 6 + \log_2 a$$

5.
$$\log_3 x + \log_3 y$$

6.
$$\log_5 a - \log_5 3$$

7.
$$\log_3 5 + \log_3 y$$

9.
$$\log_5 6 + \log_5 a$$

10. 5
$$(\log_2 a - \log_2 b)$$

11.
$$\frac{1}{2}(5\log_5 x + \log_5 y)$$

12. 8
$$(\log_5 x + \log_5 y - \log_5 z)$$

13. 3
$$(\log_2(1-x) - \log_2 y)$$

14.
$$\frac{1}{5}(2-3\log_3 x)$$

15.
$$\frac{1}{3}(\log_3 2 - 5\log_3 x)$$

16.
$$2 \log_2 3 + 10 \log_2 x - 2 \log_2 y$$

17. 2 +
$$\log_2 a - \log_2 5$$

18.
$$\frac{1}{3}(2\log_2 x + \log_2 a)$$

20.
$$\log_2(x^{2/3}y)$$

21.
$$\log_5(x^{1/2}y)$$

22.
$$\log_3(x^3y^4)$$

23.
$$\log_3(121x^6)$$

24.
$$\log_5\left(\frac{x^4z}{v}\right)$$

26.
$$\log_5\left(\frac{ab}{c^2}\right)$$

27. (a)
$$x + y + z$$
; (b) $3(x + z) + y$

29. The student did not distribute the 5 to $\log_2 6$ and $\log_2 x$; the correct answer is $5(\log_2 6 + \log_2 x)$, or $5\log_2 6 + 5\log_2 x$.

© <u>www.MathWorksheetsGo.com</u> All Rights Reserved Commercial Use Prohibited

Terms of Use: By downloading this file you are agreeing to the Terms of Use Described at http://www.mathworksheetsgo.com/downloads/terms-of-use.php.